데이터엔지니어링(4)
-
[SparkSQL] Catalyst, Tungsten 작동 원리
Spark Backend : Catalyst, Tungsten Spark는 쿼리를 돌리기 위해 위의 두 가지 엔진을 사용한다. Catalyst는 쿼리문을 최적화 시키는데 이용하고, Tungsten은 RDD level에서 용량을 최적화시킨다. Process를 보면 다음과 같다. Spark의 조직도는 다음과 같다. 조직도를 보면 알 수 있다시피 Catalyst는 SQL, DataFrame이 Structured Data를 다룰 수 있게 하는 필수 모듈이다. 그렇다면 Catalyst가 구체적으로 어떤 기능을 하는지 살펴보자. "본 포스팅은 패스트캠퍼스의 강의를 듣고, 정리한 자료임을 밝힙니다." Catalyst의 기능 Logical Plan -> Physical Plan Logical Plan이란? 수행하는 모..
2022.05.09 -
[SparkSQL] DataFrame 다루기
DataFrame SparkSQL에서 다루는 Structured Data로 아주 주요 개념이다. 기본적으로 Lazy Execution, 분산, Immutable이란 RDD의 장점을 가짐과 동시에 구조화(Structured)되어 있어 자동 최적화까지 가능하다. CSV, JSON, Hive 등으로 읽거나 변환도 가능하다. 본격적으로 DataFrame을 다뤄보자. "본 포스팅은 패스트캠퍼스의 강의를 듣고, 정리한 자료임을 밝힙니다." Basic Setting import os import findspark findspark.init(os.environ.get("SPARK_HOME")) import pyspark from pyspark import SparkConf, SparkContext import pand..
2022.05.07 -
[Spark] Spark 속도 최적화, Cashe() & Persist()
Spark 속도를 최적화시키는 방법으론, Cashe(), Persist()가 있다. Spark 특성상, Transformations는 Lazy Execution 방식으로 작업을 수행한다. 그 이유는, Eager Execution(즉시 시행)을 따를 경우 다음과 같은 비효율이 발생한다. Task를 수행할 때마다 Disk에 저장을 하고, 다시 이를 불러들여야 한다. 이 과정에서 Disk 공간은 물론, 통신으로 인한 속도 저하 등 비효율이 발생하게 된다. 그렇다면 Lazy Execution 방식으로 작업을 수행한다면 어떨까? Lazy Execution 방식이라면, Disk에 저장하지 않는다. 대신 Task에서 Task로 전달될 때 In-Memory 방식으로 데이터를 주고받을 수 있다. In-Memory 방식으..
2022.05.01 -
[Spark] 분산/병렬 처리할 때 주의할 점
앞 포스팅에서 언급했듯이, Spark는 분산/병렬 처리를 지원한다. 하지만 분산/병렬 처리가 된다고 마냥 믿고 쓰기만 해서는 안된다. 분산/병렬 처리의 성능을 올리고, 비용을 줄이기 위해선 생각해줘야 할 것들이 몇몇 있다. 지금부터 그 요소들을 살펴보고 어떻게 코딩해야 할지 방향을 짚어보자. Distributed Data-Parallel 먼저 Spark의 핵심인 'Distributed Data-Parallel'에 대해서 알아보자. 분산된 환경에서의 병렬 처리란? 1) 데이터를 여러 개로 나누어 여러 노드로 보낸다. 2) 각 노드에서 독립적으로 task를 시행. 3) 각자 만든 결괏값을 합친다. 이 일련의 과정이 분산된 환경에서의 병렬 처리이며, 그림으로 표현하면 다음과 같다. Spark를 처음 접한다면,..
2022.05.01